Experiments on liquid film thickness around Taylor finger

Author:

Kumar Amit1ORCID,Thakur Amit K.2,Gaurav Gajendra Kumar3,Ravuru Narasimha Reddy1

Affiliation:

1. Department of Chemical Engineering , Institute of Technology, Nirma University , Ahmedabad , Gujarat , India

2. Department of Chemical Engineering , University of Petroleum and Energy Studies , Dehradun , 248007 , Uttarakhand , India

3. Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes and College of Civil , Hohai University , Nanjing , 210098 , P. R. China

Abstract

Abstract Taylor finger is characterized by a single elongated air bubble that grows upward during the drainage of liquid from closed top vertical tubes. The characteristic of the Taylor finger is similar to the Taylor bubble commonly observed in gas–liquid two-phase flow. During the upward growth of the Taylor finger, liquid from the tube drains as a thin film around it. The exact prediction of film thickness is important in several engineering designs and process calculations such as the design of contacting devices, two-phase flow through porous media, boiling in tubes, and monolith reactors. The present study proposes an experimental technique to estimate the thickness of the draining liquid film. Based on experiments an empirical model has been proposed for non-dimensional film thickness in the inviscid region. The proposed model agrees well with the experimental data and equation proposed in published literatures (Davies, R. M., and G. Taylor. 1950. “The Mechanics of Large Bubbles Rising Through Extended Liquids and Through Liquids in Tubes.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 200, 375–90; Dukler, A. E., and J. Fabre. 1994. “Gas-Liquid Slug Flow.” Multiphase Science and Technology 8: 1–4; Fabre, J., and A. Liné. 1992. “Modeling of Two-Phase Slug Flow.” Annual Review of Fluid Mechanics 24: 21–46).

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3