Experimental studies on renewable hydrogen production by steam reforming of glycerol over zirconia promoted on Ni/Al2O3 catalyst

Author:

Ravuru Narasimha Reddy1,Patel Sanjay1,Kumar Amit1

Affiliation:

1. Chemical Engineering Department , Institute of Technology, Nirma University , Ahmedabad 382481 , India

Abstract

Abstract The impact of ZrO2 as a catalytic promoter for nickel-based alumina supported catalysts has been studied for the hydrogen synthesis via glycerol steam reforming. Hydrogen is a promising contender of clean fuel and has a key significance in the quest of an environment-preservation, low emission and more sustainable energy approach. Glycerol is a by-product produced during production of biodiesel by trans-esterification of vegetable oils. The higher hydrogen content in glycerol makes it the potential renewable feedstock for hydrogen production. Steam reforming process is the best method available which is highest in energy efficiency and most importantly most economical. The production of catalysts was based on the wet impregnation and co-precipitation methods. The majority of the bulk and surface properties of different synthesized catalysts were considered and determined by several characterization techniques like X-ray diffraction technique, BET surface area and scanning electron microscopy. The performance of catalyst is based on glycerol conversion and hydrogen yield obtained from the steam reforming process taking place in the fixed bed catalytic reactor. The effect of different operating conditions like contact time, temperature, metal loading, and steam to glycerol ratio were investigated to produce maximum hydrogen and glycerol conversion. The results show that the incorporation of promoter 2 % ZrO2 improved the activity of Ni/Al2O3 catalysts significantly resulting 96 % glycerol conversion, 84 % hydrogen production and greater stability at contact time = 15 kg cat s/mol, temperature = 800 °C, steam to glycerol ratio = 9:1 mol/mol, and pressure = 1 atm.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3