Impact of Dense Internals on Fluid Dynamic Parameters in Bubble Column

Author:

Kalaga Dinesh V.,Bhusare Vishal,Pant H.J.,Joshi Jyeshtharaj B.,Roy Shantanu

Abstract

Abstract Industrial gas-liquid processes such as oxidation, hydrogenation, Fischer-Trospch synthesis, liquid-phase methanol synthesis, and nuclear fission are exothermic in nature; the reactor of choice for such processes is, therefore, a bubble column equipped with heat exchanging internals. In addition to maintaining the desired process temperature, the heat exchanging vertical tube internals are used to control flow structures and liquid back mixing. The present work reports the experimentally measured gas hold-up, mean liquid velocity and liquid phase turbulent kinetic energy, using the Radioactive Particle Tracking (RPT) technique, in a 120 mm diameter bubble column equipped with dense vertical tube internals covering 23 % of the total cross-sectional area of the column. The effect of superficial gas velocity (44–265 mm/s) on gas hold-up, mean liquid velocity and turbulent kinetic energy is presented and discussed. It has been inferred from the experimental results that the vertical tube internal located at the center of the column plays a vital role in affecting the hydrodynamics when compared to the conventional internal configurations reported in the literature. For the chosen dense internal configuration, the cross-sectional distribution of the gas holdup, mean liquid velocity and turbulent kinetic energy show asymmetry for all the superficial gas velocities investigated. The overall gas holdup and the liquid turbulence increases with an increase in the superficial gas velocity. The strong liquid circulation velocities have been seen upon the insertion of the dense internals.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference54 articles.

1. Impacts of Dense Heat Exchanging Internals on Gas Holdup Cross-Sectional Distributions and Profiles of Bubble Column Using Gamma Ray Computed Tomography (CT) for FT Synthesis;Chemical Engineering Journal,2016

2. Bubble Columns with Internals: A Review;International Journal Chemical Reactions Engineering,2013a

3. Impacts of Dense Heat Exchanging Internals on Gas Holdup Cross-Sectional Distributions and Profiles of Bubble Column Using Gamma Ray Computed Tomography (CT) for FT Synthesis;Chemical Engineering Journal,2016

4. Mixing in a Co-Current Upflow Bubble Column Reactors with and without Internals;The Canadian Journal of Chemical Engineering,2017b

5. Enhancement in Gas Holdup in Bubble Columns through Use of Vibrating Internals;Canada Journal Chemical Engineering,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3