Abstract
An experimental investigation was conducted to examine, for the first time, the influences of using different designs of tube arrangements on the local heat transfer coefficient (LHTC) in a bubble column (with a diameter of 0.13 m) equipped densely with a bundle of tubes. The effect of using two different designs of tube arrangements has been examined for a broad range of gas flow rates using a sophisticated heat transfer technique. The obtained results indicate that the LHTC increases significantly with increasing the gas velocity, regardless of the design and installation of the tubes in the column. Additionally, the shape of the LHTC’s profiles alters considerably by the presence of a bundle of tubes and their arrangements. Moreover, the results indicate that the square tube pitch arrangement provides uniform heat transfer profiles, which enhance the performance of the bubble column reactor by 30%. Furthermore, the heat transfer profiles were found to be varied with the axial height of the column. The new experimental results obtained in this investigation will provide experimental reference data for creating and validating a mathematical model for predicting LHTCs. In addition, this will facilitate this kind of reactor’s design, scale-up, and operation.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献