Extractive Fermentation of Ethanol from Sweet Sorghum Using Vacuum Fractionation Technique: Optimization and Techno-Economic Assessment

Author:

Kongkaew Artit,Tönjes Jan,Siemer Michael,Boontawan Pailin,Rarey Jürgen,Boontawan Apichat

Abstract

Abstract Direct extraction of high purity ethanol from fermentation broth was investigated using a vacuum fractionation technique. Batch and repeated-batch extractive fermentation of ethanol were carried out using concentrated sweet sorghum as a carbon source. The effect of product inhibition was reduced by continuous removing ethanol from the fermented broth. About 60 % relative viability was observed in fermented broth with a higher productivity value. Due to the high value of living cells presented in the medium, repeated-batch extractive fermentation was subsequently performed. The ethanol was continuously fractionated out from the system at the average rate of 10.2 g/h with the concentration of approximately 80 wt%. There were 8 cycles of fermentation using only 1 time inoculation. Nevertheless, the calculated ethanol productivity and relative viability for each fermentation cycle were decreased gradually due to the accumulation of toxic substances in fermented broth. The simulation of 200 liters continuous extractive fermentation system using ASPEN PLUS was studied including process optimization and economical consideration. 18.5 liters of ethanol solutions 82 wt% with insignificant amounts of by-product was produced from a 200 liters extractive fermentation system per day. Production cost including raw material and utilities cost was approximately 0.71 €/liter. The economic and systemic performance process were subsequently analyzed, and including that ethanol loss was recovered using a gas scrubber connected to the vapor exiting the venturi tank as well as in the stillage stream. The calculated utility costs after process modification were 0.5 €/liter of ethanol, approximately 30 % of production cost was reduced.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3