Affiliation:
1. Department of Chemical and Biochemical Engineering , Indian Institute of Technology Patna , Patna , 801106 Bihar , India
Abstract
Abstract
An intermittent supply of energy from renewable or unconventional resources has resulted in the use of phase change materials (PCM) in thermal energy storage (TES) systems. In this work, melting and heat transfer characteristics in a rectangular enclosure of different aspect ratios (width to height) filled with a phase change material (PCM) have been studied numerically. The n-octadecane has been selected as the PCM (melting temp = 301.35 K, Prandtl number ∼ 60). We considered five different aspect ratios (AR) of the enclosure to delineate the effects of 9-fold variation in the aspect ratio. The simulations were carried out using ANSYS Fluent 19.2. In particular, extensive results have been presented and discussed in terms of the temperature contours, rate of melting and energy storage, and total time required to reach the fully melt condition. Additionally, the effect of the mushy zone parameter (A
mush
) on the melting performance has also been investigated. Low values of the A
mush
were seen to predict the higher rate of melting. At a fixed value of A
mush
, ∼ 3 times faster melting rate was observed as the value of AR was reduced from 3 to 1/3. Finally, it can be concluded that melting and energy storage rate largely depends on the aspect ratio of the enclosure and the optimal choice of the value of the A
mush
.
Subject
General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献