On the Understanding of the Adsorption of 2-Phenylethanol on Polyurethane-Keratin based Membranes

Author:

Cordero-Soto Itza,Rutiaga-Quiñones Olga,Huerta-Ochoa Sergio,Saucedo-Rivalcoba Veronica,Gallegos-Infante Alberto

Abstract

Abstract Polymers and specifically hybrid polymeric membranes have been identified as effective formulations in adsorption processes. Nevertheless, the adsorption mechanisms associated with their thermodynamics and kinetics are not fully understood, particularly when these polymeric membranes are used to adsorb 2-Phenylethanol (2-PE) to intensify its production in a specific bioconversion process. This work was aimed at giving phenomenological insights on the adsorption of 2-PE on a set of novel porous hybrid membranes based on polyurethane and keratin biofiber obtained from chicken feathers. Feathers, considered as a waste by-product of the poultry industry, represent an alternative source of keratin, a biopolymer that can be used to design low-cost materials from natural resources. Two types of hybrid membranes were prepared. i. e. composite and copolymer. Firstly, these materials were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) (before and after the adsorption process) and X-Ray (WAXD) analysis. Secondly, these materials, including the reference ones (keratin biofiber and polyurethane), were evaluated during the removal of 2-PE, relating their adsorption capabilities to physiochemical properties elucidated during the characterization. Particularly a composite with 0.1 g of chicken-feather-keratin (C1) presented the highest removal percentage (60.68%), a significant initial adsorption rate (0.2340 mgPE.h−1.gA −1), the maximum adsorption capacity (12.13 mgPE.gA −1) and the best stability and mechanical properties at studied operating conditions. In comparison with results reported in literature, in this composite carbonyl functional groups from polyurethane showed rather major affinity to 2-PE than amino groups from the keratin biofiber. To this end, parameters associated with its industrial application were obtained, namely thermodynamic and kinetic information was obtained from a proper design of experiments and phenomenological models based on adsorption macroscopic fundamentals.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference138 articles.

1. Algorithm 676 ODRPACK: Software for Weighted Orthogonal Distance Regression;ACM Transactions on Mathematical Software,1989

2. Biocomposites: Technology, Environmental Credentials and Market Forces;Journal of the Science of Food and Agriculture,2006

3. Mathematical Model of a Three Phase Partitioning Bioreactor for Conversion of Ketones Using Whole Cells;Chemical Engineering Journal,2014a

4. Bioconversion of L-Phenylalanine into 2-Phenylethanol by Kluyveromyces Marxianus in Grape Must Cultures;World Journal of Microbiology and Biotechnology,2007

5. Studies on Adsorption of Ethyl Acetate Vapor on Activated Carbon;Industrial & Engineering Chemistry Research,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3