Toward automated hail disaster weather recognition based on spatio-temporal sequence of radar images

Author:

Wang Liuping1,Chen Ziyi1,Liu Jinping12,Zhang Jin13,Alkhateeb Abdulhameed F.4

Affiliation:

1. College of Information Science and Engineering, Hunan Normal University , Changsha 410081 , China

2. Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), Hunan Normal University , Changsha 410081 , China

3. School of Computer and Communication Engineering, Changsha University of Science and Technology , Changsha 410114 , China

4. Department of Electrical and Computer Engineering, Communication Systems and Networks Research Group, Faculty of Engineering, King Abdulaziz University , Jeddah , Saudi Arabia

Abstract

Abstract Hail, an intense convective catastrophic weather, is seriously hazardous to people’s lives and properties. This article proposes a multi-step cyclone hail weather recognition model, called long short-term memory (LSTM)-C3D, based on radar images, integrating attention mechanism and network voting optimization characteristics to achieve intelligent recognition and accurate classification of hailstorm weather based on long short-term memory networks. Based on radar echo data in the strong-echo region, LSTM-C3D can selectively fuse the long short-term time feature information of hail meteorological images and effectively focus on the significant features to achieve intelligent recognition of hail disaster weather. The meteorological scans of 11 Doppler weather radars deployed in various regions of the Hunan Province of China are used as the specific experimental and application objects for extensive validation and comparison experiments. The results show that the proposed method can realize the automatic extraction of radar reflectivity image features, and the accuracy of hail identification in the strong-echo region reaches 91.3%. It can also effectively realize the prediction of convective storm movement trends, laying the theoretical foundation for reducing the misjudgment of extreme disaster weather.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3