Effect of tool wear on quality in drilling of titanium alloy Ti6Al4V, Part I: Cutting Forces, Burr Formation, Surface Quality and Defects

Author:

Eynian Mahdi,Das Kallol,Wretland Anders

Abstract

AbstractTitanium’s Ti6Al4V, alloy is an important material with a wide range of applications in the aerospace industry. Due to its high strength, machining this material for desired quality at high material removal rate is challenging and may lead to high tool wear rate. As a result, this material may be machined with worn tools and the effects of tool wear on machining quality need to be investigated. In this experimental paper, it is shown how drills of various wear levels affect the cutting forces, surface quality and burr formation. Furthermore, it is shown that high cutting forces and high plastic deformation, along with high temperatures that arise in cutting with worn tools may lead to initiation of microscopic cracks in the workpiece material in proximity of the drilling zone.

Publisher

Portico

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental analysis of burr formation during Ti6Al4V drilling;Materials Research Proceedings;2024-05-15

2. Development and testing of a wireless smart toolholder with multi-sensor fusion;Frontiers of Mechanical Engineering;2023-12

3. Effectiveness of coolant on sustainable drilling and hole quality of titanium alloy;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-08-07

4. Temperature analysis in fiber metal laminates drilling: Experimental and numerical results;Polymer Composites;2022-07-04

5. Investigating hole making performance of Al 2024-T3/Ti-6Al-4V alloy stacks: A comparative study of conventional drilling, peck drilling and helical milling;The International Journal of Advanced Manufacturing Technology;2022-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3