Investigating hole making performance of Al 2024-T3/Ti-6Al-4V alloy stacks: A comparative study of conventional drilling, peck drilling and helical milling

Author:

Ge Jia,Reji Rincy,Feist Toby,Elmore Alexander,McClelland John,Higgins Colm,McLaughlin Brian,Jin Yan,Sun DanORCID

Abstract

AbstractThis work reports a comparative study on different hole making methods, namely conventional drilling, peck drilling and helical milling, for Al 2024-T3/Ti-6Al-4V stacks in aircraft applications. The impacts of different hole making methods with constant or varied machining parameters across the stacked structures have been investigated. The resulting exit burr, hole surface roughness/microstructural change and fatigue behaviour of the machined stacks have been characterized in detail. Results show that the exit burr formation is most severe for conventional drilling and least burr is produced in helical milling coupons. Deploying varying parameters (i.e. optimal parameters for each individual metal layer) across the stacks can effectively reduce the burr formation in conventional drilling and peck drilling. 3D surface morphology shows that Al 2024-T3 hole surface contains multiple scratches and trenches, while Ti-6Al-4V hole surface features regular feed marks. Helical milling leads to the highest Al 2024-T3 hole surface roughness, which can be attributed to the abrasion caused by the evacuated Ti-6Al-4V chips. Sub-surface microstructural analysis shows that the Ti-6Al-4V layer is more prone to machining-induced microstructural change (i.e. white layer formation and/or grain plastic deformation along machining direction). The relatively low fatigue performance of stacks produced by conventional drilling and peck drilling with constant parameters can be related to the presence of the brittle Ti-6Al-4V white layer in these coupons. Deploying varied parameters across stacks in conventional drilling and peck drilling can effectively eliminate Ti-6Al-4V white layer formation and improve the stacks fatigue life by 72% and 38%, respectively. Helical milling leads to the longest stack fatigue life (~ 100% and 40% greater than conventional drilling and peck drilling, respectively).

Funder

Horizon 2020 Framework Programme

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3