Numerical Solutions for Radiative Heat Transfer in Ferrofluid Flow due to a Rotating Disk: Tiwari and Das Model

Author:

Mustafa M.1,Khan Junaid Ahmad2,Hayat T.3,Alsaedi A.4

Affiliation:

1. School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad44000, Pakistan

2. Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad44000, Pakistan

3. Department of Mathematics, Quaid-I-Azam University 45320, Islamabad44000, Pakistan

4. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, King Abdulaziz University, P. O. Box 80257, Jeddah21589, Saudi Arabia

Abstract

AbstractIn this paper, we explore the von-Kármán infinite disk problem for the situation where ferrofluid resides in the space above the rotating disk. Furthermore, flow field is influenced by axial magnetic field. In this study, we treat water as the base fluid which consists of homogeneous suspensions of ${\rm{F}}{{\rm{e}}_{\rm{3}}}{{\rm{O}}_{\rm{4}}}$ ferromagnetic particles. The main motivation here is to resolve heat transfer problem in the existence of non-linear radiative heat transfer. With the aid of von-Kármán relations, the equations of fluid motion and heat transfer are changed into a set of self-similar differential equations. These equations are dealt by an implicit finite-difference method with high precision. The results reveal that wall heat transfer rate can be improved by increasing solid volume fraction of ferromagnetic particles. Drag coefficient at the disk and heat transfer rate are increased as the strength of Lorentz force is enhanced. Viscous dissipation effect has an important part in improving heart transfer process which is vital in some applications. The results demonstrate that cooling capability of magnetite–water nanofluid is much superior to the conventional coolants. An excellent correlation of present results with the previous published articles is found in the all the cases.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3