Stability control of a novel multidimensional fractional-order financial system with time‐delay via impulse control

Author:

Zhang Zhe1ORCID,Zhang Jing1,Cheng Fan Yong2,Liu Feng3,Ding Can1

Affiliation:

1. College of Electrical and Information Engineering, Hunan University , Changsha , 410082, China

2. School of Electrical Engineering, Anhui Polytechnic University , Wuhu , 241000, China

3. School of Automation, China University of Geosciences , Wuhan , 430074, China

Abstract

Abstract This paper is concerned about the impulsive control of a class of novel nonlinear fractional-order financial system with time-delay. Considering the variation of every states in the fractional-order financial system in the real world has certain delay for various reasons, thus we add corresponding delay on every state variable. Different from the traditional method of stability judgment, we choose two dimensions of time and space to analyze, which makes the process more accurate. In addition, the sufficient condition of the stability criterion for the fractional-order financial system based on impulsive control is derived. Moreover, the impulsive control can not only make the fractional-order financial system stable in different time delay but also in the different fractional operator. Consequently, the impulsive control has generality, universality and strong applicability. In the end, some numerical simulation examples are provided to verify the effectiveness and the benefit of the proposed method.

Funder

National Nature Science Foundation of China

Hunan Provincial Innovation Foundation For Postgraduate

Research Foundation of Education Department of Anhui Province

Natural Science Foundation of Fujian Province

Scientific Research Program of Outstanding Young Talents in Universities of Fujian Province

Open Project of Electronic Information and Control University Engineering Research Center of Fujian Province

Scientific Research Launch Project of Anhui Polytechnic University

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3