Solvability of Anti-periodic BVPs for Impulsive Fractional Differential Systems Involving Caputo and Riemann–Liouville Fractional Derivatives

Author:

Liu Yuji1

Affiliation:

1. Department of Mathematics, Guangdong University of Finance and Economics, Guangzhou510320, P.R.China

Abstract

AbstractSufficient conditions are given for the existence of solutions of anti-periodic value problems for impulsive fractional differential systems involving both Caputo and Riemann–Liouville fractional derivatives. We allow the nonlinearities$p(t)f(t,x,y,z,w)$and$q(t)g(t,x,y,z,w)$in fractional differential equations to be singular at$t=0$and$t=1$. Both$f$and$g$may be super-linear and sub-linear. The analysis relies on some well known fixed point theorems. The initial value problem discussed may be seen as a generalization of some ecological models. An example is given to illustrate the efficiency of the main theorems. Many unsuitable lemmas in recent published papers are pointed out in order not to mislead readers. A conclusion section is given at the end of the paper.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference236 articles.

1. New boundary value problems for higher order impulsive fractional differential equations and their solvability;Fractional Differ. Calculus,2017

2. Existence result for boundary value problem of nonlinear impulsive fractional differential equation at resonance;J. Appl. Math. Comput,2012

3. Chaos in the fractional-order Volta’s system: modeling and simulation;Nonlinear Dyn,2009

4. Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order;Int. J. Nonlinear Sci. Numer. Simul,2006

5. Solvability of multi-point boundary value problems for multiple term Riemann-Liouville fractional differential equations;Comput. Math. Appl,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3