Affiliation:
1. Institute of Mathematics , University of Debrecen , P. O. Box 400, 4002 , Debrecen , Hungary
Abstract
Abstract
In this paper, we find all the solutions (X, Y, Z) = (FI
, FJ
, FK
), where FI
, FJ
, and FK
represent nonzero Fibonacci numbers, satisfying a generalization of Markoff equation called the Jin-Schmidt equation: AX
2 + BY
2 + CZ
2 = DXYZ + 1.
Reference16 articles.
1. Alekseyev, M. A.—Tengely, Sz.: On integral points on biquadratic curves and near-multiples of squares in Lucas sequences, J. Integer Seq. 17(6) (2014), Art. ID 14.6.6.
2. Baer, C.—Rosenberger, G.: The equation (ax2 + by2 + cz2 = dxyz) over quadratic imaginary fields, Results Math. 33(1–2) (1998), 30–39.
3. Baragar, A.—Umeda, K.: The asymptotic growth of integer solutions to the Rosenberger equations, Bull. Aust. Math. Soc. 69(3) (2004), 481–497.
4. Bosma, W.—Cannon, J.—Playoust, C.: The Magma algebra system. I. The user language, J. Symbolic Comput. 24(3–4) (1997), 235–265.
5. González-Jiménez, E.: Markoff-Rosenberger triples in geometric progression, Acta Math. Hung. 142(1) (2014), 231–243.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献