Author:
Abdulzahra A. A.,Hashim H. R.
Abstract
Suppose that {Un(P,Q)} and {Vn(P,Q)} are respectively the Lucas sequences of the first and second kinds with P≠0, Q≠0 and gcd(P,Q)=1. In this paper, we introduce an approach for studying the solutions (x,n) of the diophantine equation
±1Vn(P2,Q2)=∑k=1∞Uk−1(P1,Q1)xk,
in the cases of (P1,Q1)≠(P2,Q2) and (P1,Q1)=(P2,Q2). Moreover, we apply the procedure of this approach with which −3≤P1,P2≤3, −2≤Q1≤2 and −1≤Q2≤1. Our approach is mainly based on transferring this equation into either an elliptic curve equation that can be solved easily using the Magma software, or a quadratic equation that can be solved using the quadratic formula.
Publisher
Universiti Putra Malaysia
Reference15 articles.
1. 1. W. Bosma, J. Cannon & C. Playoust (1997). The magma algebra system I: The user language. Journal of Symbolic Computation, 24(3-4), 235–265. https://doi.org/10.1006/jsco.1996.0125.
2. 2. S. Boudaoud, D. Bellaouar & A. Boudaoud (2020). Nonclassical study on certain Diophantine inequalities involving multiplicative arithmetic functions. Malaysian Journal of Mathematical Sciences, 14(1), 17–39.
3. 3. B. DeWeger (1995). A curious property of the eleventh Fibonacci number. The Rocky Mountain Journal of Mathematics, 25(3), 977–994. http://dx.doi.org/10.1216/rmjm/1181072199.
4. 4. M. J. Deng, J. Guo & A. J. Xu (2018). A note on the diophantine equation x2 + (2c − 1)m =cn. Bulletin of the Australian Mathematical Society, 98(2), 188–195. https://doi.org/10.1017/S0004972718000369.
5. 5. H. R. Hashim & S. Tengely (2018). Representations of reciprocals of Lucas sequences. Miskolc Mathematical Notes, 19(2), 865–872. https://doi.org/10.18514/MMN.2018.2520.