Modeling of IDF curves for stormwater design in Makkah Al Mukarramah region, The Kingdom of Saudi Arabia

Author:

Ewea Hatem A.,Elfeki Amro M.,Bahrawi Jarbou A.,Al-Amri Nassir S.

Abstract

Abstract Reducing the negative impacts of flooding in Makkah AL Mukarramah region in the Kingdom of Saudi Arabia (KSA) is of utmost importance. In the last decade, there are huge mega infrastructure projects in KSA in general and in Makkah AL Mukarramah region in particular. These projects require adequate stormwater drainage systems. Since, the availability of rainfall and runoff data are scarce, engineers and hydrologists rely on models developed in temperature regions that are not hydrologically similar from temperate regions. This leads to inaccurate designs of stormwater facilities. Therefore, deveoping in situ Intensity-Duration-Frequency (IDF) curves is a must in this arid region. This paper aims at modeling IDF curves for Makkah Al-Mukarramah region. Maximum annual daily rainfall series of 80 storms (with sub-hourly and hourly data) from four stations are investigated through six different probability distributions. Consequently, rainfall depth-duration-frequency models and curves are derived. Results revealed that the Gumbel Type I is the optimal one. Thus, it is used to deduce the IDF curves and relations for each station and for the region as a whole. The R2 value for fitting power-lawfunction (i = a Db) to the data is very high for the IDF parameters. The R2 for the coefficient parameter, a, is between 0.9999 and 0.9988 while it ranges between 0.8754 and 0.8039 for exponent parameter, b. High correlation coefficient (more than 0.95) has been obtained. The resulting IDF models are strongly recommended for rigorous, effective and safe design of the stormwater systems in Makkah Al-Mukarramah region.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Reference50 articles.

1. Development of intensity–duration–frequency curves for the Kingdom of Saudi Arabia;Journal of Geomatics, Natural Hazards and Risk,2016

2. analysis in the context of climate change for Jeddah area, Western Saudi Arabia, Arabian J;of Geosciences,2016

3. Ground-Water Assessment of Sinai, Egypt;Ground Water,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3