Investigation on the efficient separation and recovery of Se(IV) and Se(VI) from wastewater using Fe–OOH–bent

Author:

Yang Junqiang1,Chen Yawen1,Tong Juan1,Su Yin1,Gao Xiaoqing12,He Jiangang1,Shi Keliang13,Hou Xiaolin14,Wu Wangsuo13

Affiliation:

1. Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China

2. Environmental Monitoring Center of Gansu Province , 730000 , Lanzhou , P. R. China

3. Key Laboratory of Special Function Materials and Structure Design , Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China

4. Center for Nuclear Technologies , Technical University of Denmark , Risø Campus , 4000 Roskilde , Denmark

Abstract

Abstract Decontamination of the toxic selenium compound, selenite (Se(IV)) and selenate (Se(VI)), from wastewater is imperative for environmental protection. Efficient approaches to remove Se(IV) and Se(VI) are in urgent needs. In this work, an accessible adsorbent Fe–OOH–bent was prepared and applied for the removal of Se(IV) and Se(VI) from wastewater. The batch experimental results demonstrate that Fe–OOH–bent exhibits high adsorption capacities of 5.01 × 10−4 and 2.28 × 10−4 mol/g for Se(IV) and Se(VI) respectively, which are higher than most of the reported bentonite based materials, especially in the case of Se(VI). Moreover, the Fe–OOH–bent displayed superior selectivity towards Se(IV) and Se(VI) even in the presence of excess competitive anions (Cl, HCO3 , NO3 , SO4 2− and PO4 3−) and HA with concentrations of 1000 times higher than Se(IV) and Se(VI). By evaluating the adsorption ratio of Se(IV) and Se(VI), the reusability of Fe–OOH–bent was great through five adsorption-desorption cycles. For practical application, the column experiments were performed with simulated wastewater samples. The breakthrough and eluting curves of Se(IV) and Se(VI) were investigated through the columns packed with Fe–OOH–bent, and the results show that Se(IV) and Se(VI) can be successfully separated and recovered using 0.1 mol/L Na2SO4 (pH = 9.0) and 0.1 mol/L Na3PO4 (pH = 9.0), respectively. Our work provides a new approach for fractional separation as well as the recovery of Se(IV) and Se(VI) from wastewater.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3