Separation of thorium(IV) from aquatic media using magnetic ferrite nanoparticles

Author:

Alharthi Sarah1

Affiliation:

1. Department of Chemistry , College of Science, Taif University , P.O. Box 11099 , Taif , 21944 , Saudi Arabia

Abstract

Abstract The separation and recovery of thorium from monazite is critical to the sustainable development of the nuclear industry as well as to environmental safety. Also, the removal of radionuclides from polluted sources is a critical issue in environmental control. Magnetic ferrite nanoparticles (MCMF-NP, Co0.5Mn0.5Fe2O4) were synthesized (4–22 nm in size) and characterized. MCMF-NP was investigated for Th(IV) separation from their aqueous medium under various test conditions of acidity, time, and Th(IV) concentration, in line with the uptake capacity. The amount of thorium adsorbed is improved when pH, time, and initial concentration are increased. The maximum uptake of Th(IV) by MCMF-NP was observed at pH 3.5–4 and a contact time of 180 min. A favorable adsorption mechanism was shown in the pseudo-second-order rate. Isotherm analysis shows an adequate process described by the Langmuir isotherm. MCMF-NP is an adsorbent capable of successful disposal of Th(IV) from waste solutions with a high uptake of 81.3 mg of Th(IV)/g of MCMF-NP. The possibility of re-using the MCMF-NP, adding value to this content as a way of compensating for the disposal costs, was studied and disused. MCMF-NP shows a good separation of thorium(IV) from monazite leach liquor as well as from wastewater samples.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3