A clinical set-up for noninvasive blood pressure monitoring using two photoplethysmograms and based on convolutional neural networks

Author:

Esmaelpoor Jamal1,Sanat Zahra Momayez2,Moradi Mohammad Hassan3

Affiliation:

1. Department of Electrical Engineering , Islamic Azad University , Boukan Branch , Boukan , Iran

2. Shariati Hospital, Tehran University of Medical Science , Tehran , Iran

3. Department of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran

Abstract

Abstract Blood pressure is a reliable indicator of many cardiac arrhythmias and rheological problems. This study proposes a clinical set-up using conventional monitoring systems to estimate systolic and diastolic blood pressures continuously based on two photoplethysmogram signals (PPG) taken from the earlobe and toe. Several amendments were applied to conventional clinical monitoring devices to construct our project plan. We used two monitors to acquire two PPGs, one ECG, and invasive blood pressure as the reference to evaluate the estimation accuracy. One of the most critical requirements was the synchronization of the acquired signals that was accomplished by using ECG as the time reference. Following data acquisition and preparation procedures, the performance of each PPG signal alone and together was investigated using deep convolutional neural networks. The proposed architecture was evaluated on 32 records acquired from 14 patients after cardiovascular surgery. The results showed a better performance for toe PPG in comparison with earlobe PPG. Moreover, they indicated the algorithm accuracy improves if both signals are applied together to the network. According to the British Hypertension Society standards, the results achieved grade A for both blood pressure measurements. The mean and standard deviation of estimation errors were +0.3 ± 4.9 and +0.1 ± 3.2 mmHg for systolic and diastolic BPs, respectively. Since the method is based on conventional monitoring equipment and provides a high estimation consistency, it can be considered as a possible alternative for inconvenient invasive BP monitoring in clinical environments.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3