Concentration-Compactness Principle for Trudinger–Moser’s Inequalities on Riemannian Manifolds and Heisenberg Groups: A Completely Symmetrization-Free Argument

Author:

Li Jungang1,Lu Guozhen2,Zhu Maochun3

Affiliation:

1. Department of Mathematics , Brown University , Providence , RI 02912 , USA

2. Department of Mathematics , University of Connecticut , Storrs , CT 06269 , USA

3. School of Mathematical Sciences , Institute of Applied System Analysis , Jiangsu University , Zhenjiang , 212013 , P. R. China

Abstract

Abstract The concentration-compactness principle for the Trudinger–Moser-type inequality in the Euclidean space was established crucially relying on the Pólya–Szegő inequality which allows to adapt the symmetrization argument. As far as we know, the first concentration-compactness principle of Trudinger–Moser type in non-Euclidean settings, such as the Heisenberg (and more general stratified) groups where the Pólya–Szegő inequality fails, was found in [J. Li, G. Lu and M. Zhu, Concentration-compactness principle for Trudinger–Moser inequalities on Heisenberg groups and existence of ground state solutions, Calc. Var. Partial Differential Equations 57 2018, 3, Paper No. 84] by developing a nonsmooth truncation argument. In this paper, we establish the concentration-compactness principle of Trudinger–Moser type on any compact Riemannian manifolds as well as on the entire complete noncompact Riemannian manifolds with Ricci curvature lower bound. Our method is a symmetrization-free argument on Riemannian manifolds where the Pólya–Szegő inequality fails. This method also allows us to give a completely symmetrization-free argument on the entire Heisenberg (or stratified) groups which refines and improves a proof in the paper of Li, Lu and Zhu. Our results also show that the bounds for the suprema in the concentration-compactness principle on compact manifolds are continuous and monotone increasing with respect to the volume of the manifold.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3