Mechanical Properties of WE43 Magnesium Alloy Joint at Elevated Temperature / Właściwości Mechaniczne Złączy Ze Stopu Magnezu WE43 W Podwyższonej Temperaturze

Author:

Turowska A.,Adamiec J.

Abstract

The WE43 cast magnesium alloy, containing yttrium and rare earth elements, remains stable at temperatures up to 300°C, according to the manufacturer, and therefore it is considered for a possible application in the aerospace and automotive. Usually, it is cast gravitationally into sand moulds and used for large-size castings that find application in the aerospace industry. After the casting process any possible defects that might appear in the casting are repaired with the application of welding techniques. These techniques also find application in renovation of the used cast elements and in the process of joining the cast parts into complex structures. An important factor determining the validity of the application of welding techniques for repairing or joining cast magnesium alloys is the structural stability and the stability of the properties of the joint in operating conditions. In the literature of the subject are information on the properties of the WE43 alloy or an impact of heat treatment on the structure and properties of the alloy, however, there is a lack of information concerning the welded joints produced from this alloy. This paper has been focused on the analysis the microstructure of the welded joints and their mechanical properties at elevated temperatures. To do this, tensile tests at temperatures ranging from 20°C to 300°C were performed. The tests showed, that up to the temperature of 150°C the crack occurred in the base material, whereas above this temperature level the rapture occurred within the weld. The loss of cohesion resulted from the nucleation of voids on grain boundaries and their formation into the main crack. The strength of the joints ranged from 150 MPa to 235 MPa, i.e. around 90 % of strength of the WE43 alloy after heat treatment (T6). Also performed a profilometric examination was to establish the shape of the fracture and to analyze how the temperature affected a contribution of phases in the process of cracking. It was found that the contribution of intermetallic phases in the process of cracking was three times lower for cracks located in the area of the weld.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys

Reference6 articles.

1. of Metallurgy and Materials;Ścibisz;archives,2010

2. of Metallurgy and Materials;kierzek;Archives,2011

3. and;kierzek;Materials Science Engineering,2011

4. of achievements in Materials and;rzychoń;Journal Manufacturing Engineering,2007

5. of Metallurgy and Materials;Adamiec;Archives,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3