In-plane nonlinear postbuckling and buckling analysis of Lee’s frame using absolute nodal coordinate formulation

Author:

Shaukat Abdur Rahman1,Lan Peng23,Wang Jia4,Wang Tengfei5,Lu Nianli6

Affiliation:

1. Department of Mechanical Engineering, University of Management and Technology, Sialkot Campus , Lahore , 51041 , Pakistan

2. School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology , Xi’an , Shanxi, 710055 , China

3. State Key Laboratory of Green Building in Western China, Xian University of Architecture & Technology , Xi’an , Shanxi, 710055 , China

4. School of Mechanical Engineering, Shenyang University of Technology , No. 111, Shenliao West Road , Shenyang , 110870 , China

5. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University , West Xianning Road 28 , Xi’an , 710049 , China

6. School of Mechatronics Engineering, Harbin Institute of Technology , Harbin , China

Abstract

Abstract In this study, four absolute nodal coordinate formulation (ANCF)-based approaches are utilized in order to predict the buckling load of Lee’s frame under concentrated load. The first approach employs the standard two-dimensional shear deformable ANCF beam element based on the general continuum mechanics (GCM). The second approach adopts the standard ANCF beam element modified by the locking alleviation technique known as the strain-split method. The third approach has the standard ANCF beam element with strain energy modified by the enhanced continuum mechanics formulation. The fourth approach utilizes the higher-order ANCF beam element based on the GCM. Two buckling load estimation methods are used, i.e., by tracing the nonlinear equilibrium path of the load–displacement space using the arc-length method and applying the energy criterion, which requires tracking eigenvalues through the dichotomy scheme. Lee’s frame with different boundary conditions including pinned–pinned, fixed-pinned, pinned-fixed, and fixed–fixed are studied. The complex nonlinear responses in the form of snap-through, snap-back, and looping phenomena during nonlinear postbuckling analysis are simulated. The critical buckling loads and buckling mode shapes obtained through the energy criterion-based buckling method are obtained. After the comparison, higher-order beam element is found to be more accurate, stable, and consistent among the studied approaches.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Building and Construction,Civil and Structural Engineering,Architecture,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3