Definition of ANCF Finite Elements

Author:

Shabana Ahmed A.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607 e-mail:

Abstract

Since the absolute nodal coordinate formulation (ANCF) was introduced, a large number of fully parametrized and gradient deficient finite elements were developed. Some of the finite elements (FE) proposed do not fall into the ANCF category, and for this reason, this technical brief describes the general requirements for ANCF finite elements. As discussed in this paper, some of the conventional isoparametric finite elements can describe arbitrary rigid body displacements and can be used with a nonincremental solution procedure. Nonetheless, these isoparametric elements, particularly the ones that employ position coordinates only, are of the C0 type and do not ensure the continuity of the position vector gradients. It is also shown that the position vector gradient continuity conditions can be described using homogeneous algebraic equations, and such conditions are different from those conditions that govern the displacement vector gradients. The use of the displacement vector gradients as nodal coordinates does not allow for an isoparametric representation that accounts for both the initial geometry and displacements using one kinematic description, can make the element assembly more difficult, and can complicate imposing linear algebraic constraint equations at a preprocessing stage. Understanding the ANCF geometric description will allow for the development of new mechanics-based computer-aided design (CAD)/analysis systems as briefly discussed in this paper.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3