Theoretical models for gas separation prediction of mixed matrix membranes: effects of the shape factor of nanofillers and interface voids

Author:

Chehrazi Ehsan1ORCID

Affiliation:

1. Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences , Shahid Beheshti University , Tehran 1983969411 , Iran

Abstract

Abstract In this work, a new model is developed by modifying the existing Maxwell–Wagner–Sillars (MWS) model to predict the gas separation properties of mixed matrix membranes (MMMs). The new modified MWS model, for the first time, provides the simultaneous exploration of the role of nanofillers/matrix interface voids and the exact geometrical shape of nanofillers in predicting the gas separation properties of MMMs. To unveil the crucial role of nanofillers/matrix interface voids, a mixed matrix membrane is considered a three-component system composed of the polymer matrix as the continuous component, nanofillers as the dispersed component and the interface voids between the two components. Moreover, the new model elucidates the role of the exact ellipsoidal shape of nanofillers within the membrane on the gas separation of MMMs by considering the shape factor of nanofillers. The newly developed modified MWS model is accurately able to predict the gas permeation of MMMs with a lower average absolute relative error (%AARE) of around 8% compared with the around 30% for conventional models such as the Maxwell model, Bruggeman model, Lewis–Nielsen model and Pal model and even compared with the modified Maxwell model (∼24%).

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3