Polymer genome–based prediction of gas permeabilities in polymers

Author:

Zhu Guanghui1,Kim Chiho2,Chandrasekarn Anand2,Everett Joshua D.1,Ramprasad Rampi2,Lively Ryan P.1ORCID

Affiliation:

1. Georgia Institute of Technology , 311 Ferst Drive, Northwest Atlanta , Atlanta , GA 30332 , USA

2. Georgia Institute of Technology , 771 Ferst Drive, Northwest Atlanta , Atlanta , GA 30332 , USA

Abstract

Abstract Predicting gas permeabilities of polymers a priori is a long-standing challenge within the membrane research community that has important applications for membrane process design and ultimately widespread adoption of membrane technology. From early attempts based on free volume and cohesive energy to more recent group contribution methods, the ability to predict membrane permeability has improved in terms of accuracy. However, these models usually stay “within the paper”, i.e. limited model details are provided to the wider community such that adoption of these predictive platforms is limited. In this work, we combined an advanced polymer chemical structure fingerprinting method with a large experimental database of gas permeabilities to provide unprecedented prediction precision over a large range of polymer classes. No prior knowledge of the polymer is needed for the prediction other than the repeating unit chemical formula. In addition, we have incorporated this model into the existing Polymer Genome project to make it open to the membrane research community.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Reference36 articles.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3