ScCO2-processed thermoplastic starch/chitosan oligosaccharide blown films and their oxygen barrier or antibacterial applications

Author:

Wang Zi-yu1,Luo Qian-li1,Mei Han-fang1,Ma Ning1,Huang Ya-qiong2,Yeh Jen-taut1

Affiliation:

1. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry of Education, Faculty of Materials Science and Engineering , Hubei University , Wuhan , China

2. School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials , Hubei University of Science and Technology , Xianning , Hubei , China

Abstract

Abstract Antibacterial and oxygen barrier films were inventively prepared by blending very small loadings (<2 wt%) of chitosan oligosaccharide (COS) or chitosan (CS) in thermoplastic starch (TPS) and/or processing with supercritical carbon dioxide (scCO2). Oxygen transmission rates (OTR) and free-volume-hole (FVH) characteristics of scCO2-processed TPS/COS and TPS/CS blown films diminish to a minimum, as their COS or CS approach a specific compatibility limit content. The minimum OTR and FVH characteristics of scCO2-processed TPS/COS films are somewhat smaller than those of corresponding TPS/COS films without scCO2-assistance, and decrease further with decreasing COS molecular weights. The minimum OTR values of scCO2-processed TPS/COS blown films with COS’s molecular weight of 200 and 500 are only 4.1 and 4.5 cm3/m× day × atm, respectively, and their antibacterial rates of Staphylococcus aureus are ≥97 %, which make them as promising antibacterial and oxygen barrier films having OTR ≦ 5 cm3/m× day × atm. Among other things, longitudinal or transversal tensile strengths acquired for the properly scCO2-processed TPS/COS or TPS/CS films are ∼30 to ∼50 % higher than those of the TPS films. Dynamic mechanical relaxation results of these scCO2-processed reveal that chitosan oligosaccharide or chitosan are compatible with TPS, as COS or CS contents are ≤ the compatibility limit value.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3