Characterisation of melamine formaldehyde microspheres synthesised with prolonged microencapsulated reaction time

Author:

Leskovšek Mirjam1ORCID,Kortnik Jože2,Stankovič Elesini Urška1,Šumiga Boštjan1

Affiliation:

1. Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering , University of Ljubljana , Snežniška 5 , Ljubljana , Slovenia

2. Department of Geotechnology, Mining and Environment, Faculty of Natural Sciences and Engineering , University of Ljubljana , Aškerčeva 12 , Ljubljana , Slovenia

Abstract

Abstract The aim of the research was to identify the influence of different microencapsulated reaction time on the morphology, size, infrared spectral, thermal and micromechanical properties of melamine formaldehyde microspheres, synthesised with modified in situ polymerisation. Microspheres are microencapsulated particles with a blurred boundary of the core and shell due to their same composition. The synthesis of microspheres was paused after 1, 3, 9 and 15 h, and stopped after 23 h. The scanning electron microscopy and granulometric analysis were used to study the morphology and size of microspheres. Regardless of the reaction time, the produced microspheres were spherical in shape and with a rough surface. The average size of microspheres was almost identical (0.709–0.790 µm), while the volume size distribution curve of the particles became narrower with prolonged reaction time. The curing mechanism of melamine formaldehyde resin was studied using the Fourier-transform infrared spectroscopy and thermal analysis, and nano-indentation identification. The results revealed a slightly more crosslinked structure: with minimal (neglected) increased thermal weight loss (only up to 0.5%) and minor increased Young’s modulus (up to 2.3%). Using a nano-indenter, the hardness of synthesised particles improved by up to 14.8% after 23 h reaction time.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3