Reciprocating friction and wear of polyimide composites filled with solid lubricants

Author:

Song Jingfu,Zhao Gai,Ding Qingjun,Qiu Jinhao

Abstract

AbstractHigh-performance engineering polymers are a potential frictional material candidate for mechanical systems with moving parts, especially at high load and speed conditions. In this study, reciprocating friction and wear of aramid fibers/polyimide composites filled with graphite, MoS2or Polytetrafluoroethylene, respectively, were systematically investigated on a Pin-on-Flat test rig. The experimental setup was simplified into friction materials reciprocating against a phosphor bronze pin to simulate the rotor/stator contact state in ultrasonic motors. A comparative study on friction reduction and wear resistance of polyimide composites indicated that graphite showed the best lubricity with low friction coefficient and wear rate. Experimental results of pressure time average velocity measurements showed that frequencies ranging from 3 to 11 Hz played a significant role on the friction coefficient variations of these porous polyimide composites, whereas increasing pressure from 4 to 6 MPa had little effect on friction reduction. Then, the microstructure of the worn surface of the three different materials was observed by scanning electron microscope to reveal the wear mechanisms. This study is expected to provide a good guidance for porous polyimide composites application in ultrasonic motors.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3