Joint formation mechanism of different laser transmission welding paths

Author:

Wang Hao1,Li Pin1,Wang Xiao1ORCID,Xu Wei1,Liu HuiXia1

Affiliation:

1. School of Mechanical Engineering , Jiangsu University , Xuefu Street 301 , Zhenjiang , 212013 , China

Abstract

Abstract In this study, the rectilinear, sine, and spiral paths of polymer transmission welding were used to perform welding comparative experiments, and the influence of various parameters in the polymer transmission welding of different laser paths on the joint performance and the formation of molten pool was discussed. The spiral path exhibited the highest joint strength, that increased by more than 50% compared with conventional rectilinear welding. The molten pool formed by spiral welding had a high depth-to-width ratio. Microscope observations revealed that the glass fiber flow signs in the molten pool were obvious, the glass fiber in the molten pool was abundant, and the bubble generation rate in the molten pool was lower. In this paper, Fortran language was used to construct Gaussian body heat source movement model with different paths. Results show that the spiral welding had higher welding stability than traditional rectilinear welding, welding defects caused by the lack of heat in the previous period can be properly compensated by selecting the appropriate welding period, Therefore, good joint performance can be achieved. In addition, amplitude and period are two important process parameters of spiral welding, and their sizes have important effects on joint strength and molten pool formation

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3