Phase analysis and corrosion behavior of brazing Cu/Al dissimilar metal joint with BAl88Si filler metal

Author:

Yu Hua1,Zhang Liangliang2,Li Shuai3,Cai Fangfang14,Li Yunpeng14,Shi Yinkai14,Zhong Sujuan5,Ma Jia5,Jiu Yongtao5,Long Weimin5,Dong Honggang2,Wei Shizhong14

Affiliation:

1. School of Material Science & Engineering, Henan University of Science and Technology , Luoyang , 471000 , China

2. School of Materials Science and Engineering, Dalian University of Technology , Dalian , 116000 , China

3. School of Mechanical Engineering, North China University of Water Resources and Electric Power , Zhengzhou 450045 , China

4. National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials , Luoyang , 471000 , China

5. Zhengzhou Research Institute of Mechanical Engineering Co. Ltd. , Zhengzhou , 450000 , China

Abstract

Abstract To meet the requirements of automatic production, a new type of green BAl88Si cored solder was developed. The lap brazing experiments were carried out with copper and aluminum as brazing substrates. The microstructure, phase composition, and corrosion behavior of solder joint interface were studied by field emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, electron backscattering diffraction, tensile testing machine, and electrochemical workstation. The results show that the brazing joint of Cu/BAl88Si/Al is metallurgical bonding, and the brazing joint of Cu/BAl88Si/Al is composed of Cu9Al4, CuAl2, a-Al, (CuAl2 + a-Al + Si) ternary eutectic. In addition, there is no obvious preference for each grain in the brazing joint, and there are S texture {123}<634>, Copper texture {112}<111>, and Brass texture {110}<112>. The interface of Cu9Al4/CuAl2 is a non-coherent crystal plane and does not have good lattice matching. The average particle size of CuAl2 is 11.95 µm and that of Al is 28.3 µm. However, the kernel average misorientation (KAM) value at the brazed joint interface is obviously higher than that at the brazed joint interface copper, so the defect density at the brazed joint interface aluminum is higher than that at the brazed joint interface copper. At the same time, due to poor corrosion resistance at the interface on the aluminum side of the brazed joint, serious corrosion spots and corrosion cracks occur at the same time, which leads to the shear performance of the brazed joint decreasing by about 75% after salt spray test for 240 h.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3