Study of gold nanoparticles’ preparation through ultrasonic spray pyrolysis and lyophilisation for possible use as markers in LFIA tests

Author:

Jelen Žiga1,Majerič Peter12,Zadravec Matej3,Anžel Ivan1,Rakuša Martin4,Rudolf Rebeka12

Affiliation:

1. Chair of Materials and Forming, University of Maribor, Faculty of Mechanical Engineering , Smetanova Ulica 17 , 2000 Maribor , Slovenia

2. Zlatarna Celje D.O.O. , Kersnikova Ulica 19 , 3000 Celje , Slovenia

3. Chair for Power, Process and Environmental Engineering, University of Maribor, Faculty of Mechanical Engineering , Smetanova Ulica 17 , 2000 Maribor , Slovenia

4. Department of Neurologic Diseases, Medical Research Department, University Medical Centre Maribor , Ljubljanska Ulica 5 , 2000 Maribor , Slovenia

Abstract

Abstract To monitor the progress and prevent the spread of the COVID-19 pandemic in real time and outside laboratories, it is essential to develop effective tests that can ensure rapid, selective, and reliable diagnosis of infected persons in different environments. Key in this regard is the lateral flow immunoassays (LFIAs) that can detect the presence of the SARS-CoV-2 virus quickly, with the aid of nanoparticles (NPs) and specific proteins. We report the use of gold (Au) NPs AuNPs synthesised from a gold(iii) chloride tetrahydrate precursor in a USP device and collected in a suspension composed of deionised water with polyvinylpyrrolidone as a stabiliser and cryoprotectant. In combination with freeze-drying of the AuNPs’ suspension to achieve water elimination, improved stability, and the target concentration, they exhibit the necessary properties for use as markers in LFIA rapid diagnostic tests. This was confirmed by complementary characterisation determined by using the techniques including inductively coupled plasma-optical emission spectrometry, dynamic light scattering method and zeta-potential, ultraviolet-visible spectroscopy, X-ray diffraction, scanning electron microscopy with energy dispersion spectrometer, and transmission electron microscopy, as well as with the preparation of a prototype LFIA test strip with AuNPs. Thus, such AuNPs, as well as the USP method, show promise for the development of new markers for use in LFIA.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3