Development of a novel heat- and shear-resistant nano-silica gelling agent

Author:

Liu Yunfeng1ORCID,Tang Yongfan1,Chang Qiuhao2,Ma Chentao34,He Shunhua5,Yuan Li1

Affiliation:

1. Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company , Chengdu , 610213 , China

2. Mewbourne College of Earth & Energy, The University of Oklahoma , Norman , OK 73019-0390 , United States of America

3. PetroChina Southwest Oil & Gasfield Company , Chengdu , 610213 , China

4. Petroleum Engineering School, Southwest Petroleum University , Chengdu , 610500 , China

5. Southern Sichuan Gas Field, PetroChina Southwest Oil & Gasfield Company , Luzhou , 646000 , China

Abstract

Abstract The efficient and sustainable development of deep marine carbonate rock reservoirs in the Sichuan Basin has higher technical requirements for reservoir acidizing alteration technology. However, the acidification effect of deep marine carbonate rock reservoirs was hampered by the drawbacks such as uncontrollable acidification rate of the reservoir, the large friction resistance, and the great acid filtration. A novel heat- and shear-resistant nano-silica gelling agent CTG-1 is prepared based on nano-silica and combined with amide compounds. The influence of different factors on the acid filtration performance and heat- and shear-resistant capacity of carbonate rock reservoirs were analyzed, and then the mechanism of nano-silica gelling agent for acid filtration reduction in carbonate rock reservoirs is revealed. The research results showed that the filtration resistance of acid solution decreases slightly with the increase in the content of nano-silica gelling agent and reservoir pressure. The viscosity, fluid loss coefficient, and friction-reducing rate are as high as 25 mPa s, 2.4 × 10−2 m3 min1/2, and 71%, respectively, showing significantly better result than that of commonly used commercial gelling agents. The development of nano-silica gelling agent provides a reliable reference for effectively improving the acidification and stimulation effect of deep marine carbonate rock reservoirs.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3