Conversion of sub-µm calcium carbonate (calcite) particles to hollow hydroxyapatite agglomerates in K2HPO4 solutions

Author:

Yanyan Sun1,Guangxin Wang1,Wuhui Li1,Yaming Wang1,Hayakawa Satoshi2,Osaka Akiyoshi13

Affiliation:

1. Department of Materials Science and Engineering, Henan University of Science and Technology , Luoyang , Henan Province, 471023 , China

2. Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University , Tsushima, Okayama , 700-8530 , Japan

3. Faculty of Engineering, Okayama University , Tsushima, Okayama , 700-8530 , Japan

Abstract

Abstract Sub-µm CaCO3 (calcite; CC) particles were converted to calcium monohydrogenphosphate dihydrate (DCPD) and hydroxyapatite (HAp) via soaking treatments in K2HPO4 solutions with varied pH (3–12) and concentrations (0.1–1.5 M) at 37°C for up to 10 days. DCPD was derived from the solutions with pH ≤ 6; while hollow HAp was yielded when pH ≥ 7 in assemblies of petal-like crystallites. Results of magic angle spinning (MAS) and cross-polarization magic angle spinning (CP-MAS) NMR studies have shown that the HAp lattice has only PO4 2− but no HPO4 2− at B (phosphate) sites. Trace amounts of CO3 2− have occupied both A (OH) and B (PO4) sites, and H2O is adsorbed on surface crystallites. The primary crystallite size of HAp derived from Scherrer equation increases quickly in a 12 h period and becomes gradually stable afterward. Samples of particles soaked within 3 h in a temperature range of 20–80°C were analyzed by X-ray diffraction. It is shown that the rate constant of 1 M solution is about an order of magnitude greater than that of 0.1 M solution and the apparent activation energy is 33 kJ/mol. In this work, the conversion of CC to HAp can be quantitatively controlled to solve the problem of slow degradation of HAp.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3