Calcium Hydroxyapatite Coatings: Low-Temperature Synthesis and Investigation of Antibacterial Properties

Author:

Lukaviciute Laura1,Karciauskaite Justina1,Grigoraviciute Inga1,Vasiliauskiene Dovile2ORCID,Sokol Denis1,Kareiva Aivaras1ORCID

Affiliation:

1. Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

2. Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

Abstract

In the present work, the low-temperature synthesis of substituted calcium hydroxyapatite (Ca10(PO4)6(OH)2, HAP) with copper and zinc ions on titanium substrates was performed. Initially, CaCO3 coatings were synthesised on titanium substrate using the sol-gel method at 550 °C in a CO2 atmosphere. Crystalline calcium hydroxyapatite was then synthesised from these CaCO3 coatings through the dissolution-precipitation method at low temperature (80 °C). X-ray diffraction (XRD) analysis, FTIR and Raman spectroscopies, and scanning electron microscopy (SEM) were employed to evaluate the phase composition, surface functional groups, crystallinity, and morphology of the coatings. The results showed the formation of hexagonal HAP particles with a size of 20 nm at low temperature, exhibiting high homogeneity in particle size distribution. In the calcium hydroxyapatite, some of the Ca2+ ions were replaced by Cu2+ ions. Heating the mixture of Ca(NO3)2 and Cu(NO3)2 solutions at 550 °C in a CO2 atmosphere led to the formation of copper hydroxide carbonate (malachite, Cu2(OH)2CO3) along with CaCO3. The reaction between the sol-gel precursor obtained and Na2HPO4 resulted in the formation of copper-substituted hydroxyapatite (Cu-HAP). Different synthesis methods were tested with Zn2+ ions, and on the surface of the coating, Zn(OH)(NO3)(H2O), Zn3(OH)4(NO3)2, and unreacted CaCO3 were formed. Antibacterial properties of the coatings were tested using the inhibition zone method. No inhibition zones were observed for HAP. However, in the Cu and Zn containing coatings, inhibition zones were observed in the presence of a colony of B. subtilis bacteria. However, no inhibition zones were detected in the presence of E. coli bacteria.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3