Scalable fabrication of carbon materials based silicon rubber for highly stretchable e-textile sensor

Author:

Li Xinlin12,Wang Rixuan3,Wang Leilei2,Li Aizhen4,Tang Xiaowu3,Choi Jungwook2,Zhang Pengfei1,Jin Ming Liang56,Joo Sang Woo2

Affiliation:

1. College of Electromechanical Engineering , Qingdao University , Qingdao 266071 , China

2. School of Mechanical Engineering , Yeungnam University 280 Daehak-ro , Gyeongsan , Gyeongbuk 38541 , Republic of Korea

3. Department of Advanced Materials Engineering, Yeungnam University , Gyeongsan , 38541 , Republic of Korea

4. College of Textiles & Clothing, Qingdao University , Qingdao 266071 , China

5. Institute for Future, Qingdao University , Qingdao 266071 , China

6. Institute for Translational Medicine, Medical College of Qingdao University , Qingdao 266071 , China

Abstract

Abstract Development of stretchable wearable devices requires essential materials with high level of mechanical and electrical properties as well as scalability. Recently, silicone rubber-based elastic polymers with incorporated conductive fillers (metal particles, carbon nanomaterials, etc.) have been shown to the most promising materials for enabling both high electrical performance and stretchability, but the technology to make materials in scalable fabrication is still lacking. Here, we propose a facile method for fabricating a wearable device by directly coating essential electrical material on fabrics. The optimized material is implemented by the noncovalent association of multiwalled carbon nanotube (MWCNT), carbon black (CB), and silicon rubber (SR). The e-textile sensor has the highest gauge factor (GF) up to 34.38 when subjected to 40% strain for 5,000 cycles, without any degradation. In particular, the fabric sensor is fully operational even after being immersed in water for 10 days or stirred at room temperature for 8 hours. Our study provides a general platform for incorporating other stretchable elastic materials, enabling the future development of the smart clothing manufacturing.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3