Engineered nanoflowers, nanotrees, nanostars, nanodendrites, and nanoleaves for biomedical applications

Author:

Khakbiz Mehrdad12,Shakibania Sara23,Ghazanfari Lida4,Zhao Shan5,Tavakoli Milad2,Chen Zi6

Affiliation:

1. Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey , Piscataway , NJ , United States of America

2. Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran , Tehran , Iran

3. Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology , Gliwice , Poland

4. Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, University of North Carolina , Chapel Hill , NC , United States of America

5. University of North Carolina Wilmington , Wilmington , NC , United States of America

6. Division of Thoracic Surgery, Brigham and Women’s Hospital, Harvard Medical School , 75 Francis St , Boston , MA, 02215 , United States of America

Abstract

Abstract The development of architectured nanomaterials has been booming in recent years in part due to their expanded applications in the biomedical field, such as biosensing, bioimaging, drug delivery, and cancer therapeutics. Nanomaterials exhibit a wide variety of shapes depending on both the intrinsic properties of the materials and the synthesis procedures. Typically, the large surface areas of nanomaterials improve the rate of mass transfer in biological reactions. They also have high self-ordering and assembly behaviors, which make them great candidates for various biomedical applications. Some nanomaterials have a high conversion rate in transforming the energy of photons into heat or fluorescence, thus showing promise in cancer treatment (such as hyperthermia) and bioimaging. The nanometric dimension makes them suitable for passing through the biological barriers or interacting with the natural molecules (such as DNA, protein). Nanoflowers, nanotrees, nanostars, and nanodendrites are examples of nano-sized structures, which exhibit unique geometry-dependent properties. Here we reviewed the fabrication methods, features, properties, and biomedical applications of four nano-structured materials including nanoflowers, nanotrees, nanostars, nanodendrites, and nanoleaves. We further provided our perspectives on employing these novel nanostructures as advanced functional materials for a broad spectrum of applications.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3