Optimization of non-linear conductance modulation based on metal oxide memristors

Author:

Liu Huan1,Wei Min1,Chen Yuzhong1

Affiliation:

1. State Key Laboratory of Electronic Thin Film and Integrated Devices , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China

Abstract

Abstract As memristor-simulating synaptic devices have become available in recent years, the optimization on non-linearity degree (NL, related to adjacent conductance values) is unignorable in the promotion of the learning accuracy of systems. Importantly, based on the theoretical support of the Mott theory and the three partial differential equations, and the model of conductive filaments (CFs), we analyzed and summarized the optimization schemes on the physical structure and the extra stimulus signal from the internal factor and external influence, two aspects, respectively. It is worth noting that we divided the extra stimulus signals into two categories, the combined pulse signal and the feedback pulse signal. The former has an internal logical optimized phenomenon, and the composition of only two parts in each cycle leads to a simple peripheral circuit. The latter can obtain an almost linear NL curve in software stimulation because of its feature in real-time adjustment of signals, but it is complex in hardware implementation. In consideration of space and energy consumption, achieving memristor with different resistive switching (RS) layers can be another optimization scheme. Special attention should be paid to the weaker NL, which could improve learning accuracy at the system level only when the value of other non-ideal properties such as the on/off ratio is within a certain range.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3