A review on the mechanical properties for thin film and block structure characterised by using nanoscratch test

Author:

Wang Xianfeng1,Xu Ping1,Han Rui1,Ren Jun1,Li Longyuan2,Han Ningxu1,Xing Feng1,Zhu Jihua1

Affiliation:

1. Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen518060; China

2. School of Engineering, University of Plymouth, PlymouthPL4 8AA, United Kingdom of Great Britain and Northern Ireland

Abstract

AbstractThe nanoscratch test has been identified as one of the important tools for evaluating the mechanical and tribological properties of materials. This paper reviews the current researches on the nanoscratch test using to characterise the mechanical properties of three typical materials, including thin film, polymer composite and concrete, from the perspectives of the Berkovich indenter, parameter selection, mode selection, and analysis of resulting data. In addition, to provide a deep understanding on the test from different magnitude, a comparison between the microscratch test and nanoscratch test on the evaluation of tribological performance is also provided in this paper. The characterisation by nanoscratch test of two structural samples, in terms of layered film structures (thin film and coating sample) and single layer block structure (polymer composite sample and concrete samples) are also described in this paper, which aims to provides a deep understand on the evaluation the adhesion, tribological and interfacial properties of the typical materials samples by nanoscratch test. Finally, the coefficient of friction and critical load are discussed, which are two important parameters in tribological properties and adhesion properties.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3