Stability enhancement of perovskite solar cells using multifunctional inorganic materials with UV protective, self cleaning, and high wear resistance properties

Author:

Azad Seyyedeh Sedigheh,Keshavarzi Reza,Mirkhani Valiollah,Moghadam Majid,Tangestaninejad Shahram,Mohammadpoor-Baltork Iraj

Abstract

AbstractOrganometal halide perovskite solar cells have reached a high power conversion efficiency of up to 25.8% but suffered from poor long-term stability against environmental factors such as ultraviolet irradiation and humidity of the environment. Herein, two different multifunctional transparent coatings containing AZO and ZnO porous UV light absorbers were employed on the front of the PSCs. This strategy is designed to improve the long-term stability of PSCs against UV irradiation. Moreover, the provided coatings exhibit two additional roles, including self-cleaning and high wear resistance. In this regard, AZO coating showed higher wear resistance compared to the ZnO coating. The photocatalytic self-cleaning properties of these prepared coatings make them stable against environmental pollutants. Furthermore, appropriate mechanical properties such as high hardness and low coefficient of friction that leads to high resistance against wear are other features of these coatings. The devices with AZO/Glass/FTO/meso-TiO2/Perovskite/spiro/Au and ZnO/Glass/FTO/meso-TiO2/Perovskite/spiro/Au configurations maintained 40% and 30% of their initial performance for 100 h during 11 days (9 h per day) against the UV light with the high intensity of 50 mW cm-2 which is due to higher absorption of AZO compared with ZnO in the ultraviolet region. Since AZO has a higher light transmission in the visible region in comparison to ZnO, perovskite cells with AZO protective layers have higher efficiency than perovskite cells with ZnO layers. It is worth noting that the mentioned features make these coatings usable for cover glass in all types of solar cells.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3