Recent progress in the synthesis and applications of vertically aligned carbon nanotube materials

Author:

Huang Shan1,Du Xianfeng1,Ma Mingbo1,Xiong Lilong1

Affiliation:

1. Department of Chemistry, School of Chemistry, Xi’an Jiaotong University , Xi’an 710049 , China

Abstract

Abstract Vertically aligned carbon nanotube (VACNT) materials is a promising candidate in different fields. The intrinsic performance of VACNTs, such as a large specific surface area, high conductivity, and especially its vertical conductive channel, stands out the VACNT-based device from conventional carbon material-based devices in the energy, environmental sustainability, and so on. In this review, a comprehensive and in-depth summary on the synthesis method and fundamental mechanisms, and design strategies for the novel VACNT materials, is presented. In addition, an overview of the latest development in high-efficiency utilization of VACNT materials in representative fields, including energy storage and conversion, catalysis, terahertz spectroscopy, biology and biomedicine, and environmental sustainability, is given. Finally, the challenges and promising perspectives of VACNT materials in future development are outlined.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3