Abstract
Abstract
A facile and effective catalyst deposition process for carbon nanotube (CNT) array growth via chemical vapor deposition using a resistively heated thermal evaporation technique to sublimate FeCl3 onto the substrate is demonstrated. The catalytic activity of the sublimated FeCl3 catalyst precursor is shown to be comparable to the well-studied e-beam evaporated Fe catalyst, and the resulting vertically aligned CNTs (VA-CNTs) have a similar diameter, walls, and defects, as well as improved bulk electrical conductivity. In contrast to standard e-beam-deposited Fe, which yields base-growth CNTs, scanning and transmission electron microscopy and X-ray photoelectron spectroscopy characterizations reveal a tip-growth mechanism for the FeCl3-derived VA-CNT arrays/forests. The FeCl3-derived forests have a lower (∼1/3 less) longitudinal indentation modulus, but higher longitudinal electrical conductivity (greater than twice) than that of the e-beam Fe-grown CNT arrays. The sublimation process to grow high-quality VA-CNTs is a highly facile and scalable process (extensive substrate shape and size, and moderate vacuum and temperatures) that provides a new route to synthesizing aligned CNT forests for numerous applications.
Funder
Airbus, Boeing, Embraer, Lockheed Martin
National Nanotechnology Infrastructure Network
Ansys
US Army Research Office
MIT’s Microsystems Technology Laboratories
NSF
Institute for Soldier Nanotechnologies
Center for Nanoscale Systems, Harvard University
Hexcel
Subject
Electrical and Electronic Engineering,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献