Incorporation of redox-active polyimide binder into LiFePO4 cathode for high-rate electrochemical energy storage

Author:

Zhang Qing1,Sha Zongfeng1,Cui Xun1,Qiu Shengqiang23,He Chengen3,Zhang Jinlong3,Wang Xianggang3,Yang Yingkui13

Affiliation:

1. Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities , Wuhan 430074 , China

2. School of Chemistry and Materials Engineering, Hunan University of Arts and Science , Changde 41500 , China

3. Graphene R&D Center, Guangdong Xigu Tanyuan New Materials Corporation Limited & South-Central University for Nationalities , Foshan 528000 , China

Abstract

Abstract Commercial LiFePO4 (LFP) electrode still cannot meet the demand of high energy density lithium-ion batteries as a result of its low theoretical specific capacity (170 mA h g−1). Instead of traditional electrochemical inert polyvinylidene fluoride (PVDF), the incorporation of multifunctional polymeric binder becomes a possible strategy to overcome the bottleneck of LFP cathode. Herein, a novel polyimide (PI) binder was synthesized through a facile hydrothermal polymerization route. The PI binder exhibits better connection between active particles with uniform dispersion than that of PVDF. The multifunctional PI binder not only shows well dispersion stability in the organic electrolyte, but also contributes to extra capacity because of the existence of electrochemical active carbonyl groups in the polymer chain. Besides, the high intrinsic ion conductivity of PI also results in promoted ion transfer kinetic. Consequently, the LFP cathode using PI binder (LFP–PI) shows larger capacity and better rate capability than LFP cathode with PVDF binder (LFP–PVDF). Meanwhile, the superior binding ability also endows LFP–PI with great cycling stability compared to the LFP–PVDF electrode.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3