Polymeric Binders Used in Lithium Ion Batteries: Actualities, Strategies and Trends

Author:

Chen Bin1,Zhang Zhe1,Xiao Min2,Wang Shuanjin2ORCID,Huang Sheng2,Han Dongmei12ORCID,Meng Yuezhong1234ORCID

Affiliation:

1. School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China

2. The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 China

3. Research Center of Green Catalysts College of Chemistry Zhengzhou University Zhengzhou 450001 China

4. Institute of Chemistry Henan Academy of Sciences Zhengzhou 450000 China

Abstract

AbstractPolymeric binders account for only a small part of the electrodes in lithium‐ion batteries, but contribute an important role of adhesion and cohesion in the electrodes during charge/discharge processes to maintain the integrity of the electrode structure. Therefore, polymeric binders have become one of the key materials to improve the charge/discharge properties of lithium‐ion batteries. Qualified polymer binders should not only require good bond strength, mechanical properties, conductivity, chemical functionality and processing performance, but also be environmentally friendly and low cost. The existing commercial polymeric binders cannot meet all the above requirements at the same time. This is a hot research area that researchers are keen to focus on, and it is hoped that through structural design, the matching of functional groups can meet the requirements of high‐capacity lithium‐ion batteries with long cycle life. Focusing on the structural design of polymer binders, the mechanism of interaction with electrode materials, and the functional properties of polymer binders, this review summarizes the polymer binders used in the cathode and anode in recent years. It could expect that this review can inspire a deep consideration on these critical issues, paving new pathways to improve comprehensive performance of polymer binders.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3