Unlocking approximation for in-memory computing with Cartesian genetic programming and computer algebra for arithmetic circuits

Author:

Froehlich Saman1,Drechsler Rolf12

Affiliation:

1. 9168 Universität Bremen , Arbeitsgruppe Rechnerarchitektur , Bremen , Germany

2. Cyber-Physical Systems , DFKI GmbH , Bremen , Germany

Abstract

Abstract With ReRAM being a non-volative memory technology, which features low power consumption, high scalability and allows for in-memory computing, it is a promising candidate for future computer architectures. Approximate computing is a design paradigm, which aims at reducing the complexity of hardware by trading off accuracy for area and/or delay. In this article, we introduce approximate computing techniques to in-memory computing. We extend existing compilation techniques for the Programmable Logic in-Memory (PLiM) computer architecture, by adapting state-of-the-art approximate computing techniques for arithmetic circuits. We use Cartesian Genetic Programming for the generation of approximate circuits and evaluate them using a Symbolic Computer Algebra-based technique with respect to error-metrics. In our experiments, we show that we can outperform state-of-the-art handcrafted approximate adder designs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference25 articles.

1. A. S. Ahmed, M. Soeken, D. Große, and R. Drechsler. Equivalence checking using Gröbner Bases. In Int’l Conf. on Formal Methods in CAD, 2016.

2. Milan CeSka, Jiri MatyaS, Vojtech Mrazek, Lukas Sekanina, Zdenek Vasicek, and Tomas Vojnar. Approximating complex arithmetic circuits with formal error guarantees: 32-bit multipliers accomplished. In International Conference on Computer-Aided Design, pages 416–423, 2017.

3. Chair for Embedded Systems – Karlsruhe Institute of Technology. Gear – approxadderlib.

4. A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler. Precise error determination of approximated components in sequential circuits with model checking. In Design Automation Conf., 2016.

5. Yi-Chou Chen, C. F. Chen, C. T. Chen, J. Y. Yu, S. Wu, S. L. Lung, and R. Liu. An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device. In IEEE International Electron Devices Meeting, pages 37.4.1–37.4.4, 2003.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Input Distribution Aware Library of Approximate Adders Based on Memristor-Aided Logic;2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID);2024-01-06

2. MARADIV: Library of MAGIC-Based Approximate Restoring Array Divider Benchmark Circuits for In-Memory Computing Using Memristors;IEEE Transactions on Circuits and Systems II: Express Briefs;2023-07

3. Finite State Automata Design using 1T1R ReRAM Crossbar;2023 21st IEEE Interregional NEWCAS Conference (NEWCAS);2023-06-26

4. Investigating Various Adder Architectures for Digital In-Memory Computing Using MAGIC-based Memristor Design Style;2022 IEEE International Conference on Emerging Electronics (ICEE);2022-12-11

5. IMAGIN: Library of IMPLY and MAGIC NOR-Based Approximate Adders for In-Memory Computing;IEEE Journal on Exploratory Solid-State Computational Devices and Circuits;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3