A systematic DFT study of arsenic doped iron cluster AsFe n (n = 1–4)

Author:

Das Shayeri1,Ranjan Prabhat1,Chakraborty Tanmoy2ORCID

Affiliation:

1. Department of Mechatronics Engineering , Manipal University Jaipur , Dehmi Kalan - 303007 , India

2. Department of Chemistry and Biochemistry , School of Basic Sciences and Research, Sharda University , Greater Noida - 201310 , India

Abstract

Abstract The research on metallic clusters in relevance to its far-reaching involvement in the high technology sector, solid-state physics and catalysis is an interesting and significant field of study. In this report, the investigation of arsenic doped iron cluster, AsFe n (n = 1–4) aided by conceptual density functional theory (CDFT) method has been performed. CDFT based global descriptors-mainly HOMO–LUMO energy gap and other parameters of these clusters are worked out. Obtained data shows that band energy gap varies in the magnitude of 1.451–3.138 eV. Uppermost magnitude of HOMO–LUMO energy gap i.e. 3.138 eV is observed for AsFe while AsFe4 show the smallest energy gap. It is noted that band gap of these systems decreases with increase in the cluster size, ‘n’. Direct association concerning both parameters HOMO–LUMO energy gap and molecular hardness of AsFe n clusters have been found. It indicates that among the studied compound AsFe is the most stable system whereas AsFe4 is the least stable. Dipole moment of the clusters is observed in the variation of 2.303 Debye to 3.853 Debye, signifying that the bond within the clusters is ionic in nature. The computed bond length between Fe–Fe in AsFe n is in agreement with the experimental data.

Funder

Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3