Study of Oxide-based Nano Cluster X3O4 (X = Ti, Fe and Zn) for Biomedical Applications: A CDFT Approach

Author:

Das Shayeri1,Ranjan Prabhat1,Chakraborty Tanmoy2

Affiliation:

1. Manipal University Jaipur

2. Sharda University

Abstract

Abstract In recent years, oxide-based nano clusters have shown some significant applications in medical sciences, bio sensing, catalysis, and energy storage. Here we have reported the computational study of oxide-based nano clusters X3O4 (X = Ti, Fe, Zn) by means of Conceptual Density Functional Theory (CDFT) method. Geometry optimization and freqneucy computation of these clusters are carried out using the functional B3LYP / LANL2DZ in the DFT framework. Highest Occupied Molecular Orbital (HOMO) – Lowest Unoccupied Molecular Orbital (LUMO) of the clusters are found between 2.019 eV to 3.570 eV. The global CDFT descriptors viz. hardness, softness, electronegativity, electrophiliicty index and dipole moment are calculated. Result shows that Zn3O4 has the maximum stability whereas Fe3O4 is highly reactive in nature. Electronegatiivty and electrophilicity index of these clusters decrease from Fe3O4 to Zn3O4 to Ti3O4. Analyses are conducted for the optical characteristics of X3O4 nano clusters, comprising their refractive index, dielectric constant, optical electronegativity and IR activity. Refractive index, dielectric constant and range of harmonic frequency increase from Zn3O4 to Fe3O4 via Ti3O4. The estimated bond length, HOMO-LUMO energy gap, refractive index and IR activity of the nano clusters are in agreement with the reported experimental and theoretical results. The physico-chemical properties of X3O4 nano clusters indicate their potential applications in biomedical sciences especialy for the treatment of cancer cells.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3