Synthesis of modified Schiff base appended 1,2,4-triazole hybrids scaffolds: elucidating the in vitro and in silico α-amylase and α-glucosidase inhibitors potential

Author:

Abbasi Shahzad Ahmad1,Rahim Fazal1,Hussain Rafaqat1,Rehman Wajid1,Khan Shoaib2ORCID,Taha Muhammad3,Iqbal Tayyiaba2,Khan Yousaf4,Ali Shah Syed Adnan56

Affiliation:

1. Department of Chemistry , Hazara University , Mansehra , 21120 , Pakistan

2. Department of Chemistry , Abbottabad University of Science and Technology (AUST) , Abbottabad , Pakistan

3. Department of Clinical Pharmacy , Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University , P.O. Box 1982 31441 , Dammam , Saudi Arabia

4. Department of Chemistry , COMSATS University Islamabad , 45550 , Islamabad , Pakistan

5. Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam , Bandar Puncak Alam , Selangor 42300 , Malaysia

6. Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam , Bandar Puncak Alam , Selangor 42300 , Malaysia

Abstract

Abstract The current study involves the synthesis of Schiff bases based on 1,2,4-triazoles skeleton and assessing their α-amylase and α-glucosidase profile. Furthermore, the precise structures of the synthesized derivatives were elucidated using various spectroscopic methods such as 1H-NMR, 13C-NMR and HREI-MS. Using glimepiride as the reference standard, the in vitro α-glucosidase and α-amylase inhibitory activities of the synthesized compounds were evaluated in order to determine their potential anti-diabetic properties. All analogues showed varied range of inhibitory activity having IC50 values ranging from 17.09 ± 0.72 to 45.34 ± 0.03 μM (α-amylase) and 16.35 ± 0.42 to 42.31 ± 0.09 μM (α-glucosidase), respectively. Specifically, the compounds 1, 7 and 8 were found to be significantly active with IC50 values of 17.09 ± 0.72, 19.73 ± 0.42, and 23.01 ± 0.04 μM (against α-amylase) and 16.35 ± 0.42, 18.55 ± 0.26, and 20.07 ± 0.02 μM (against α-glucosidase) respectively. The obtained results were compared with the Glimepiride reference drug having IC50 values of 13.02 ± 0.11 μM (for α-glucosidase) and 15.04 ± 0.02 μM (for α-amylase), respectively. The structure–activity relationship (SAR) studies were conducted based on differences in substituent patterns at varying position of aryl rings A and B may cause to alter the inhibitory activities of both α-amylase and α-glucosidase enzymes. Additionally, the molecular docking study was carried out to explore the binding interactions possessed by most active analogues with the active sites of targeted α-amylase and α-glucosidase enzymes.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3