Framework for urban sound assessment at the city scale based on citizen action, with the smartphone application NoiseCapture as a lever for participation

Author:

Can Arnaud12,Audubert Philippe3,Aumond Pierre12,Geisler Elise42,Guiu Claire3,Lorino Tristan12,Rossa Emilie3

Affiliation:

1. Univ Gustave Eiffel, CEREMA, UMRAE , F-44344 Bouguenais , France

2. IRSTV, FR CNRS 2488, Centrale Nantes , 1 Rue de la Noë, 44321 Nantes Cedex 3 , France

3. Ville de Rezé, Hôtel De ville , Place , J-.B Daviais – BP159, 44403 Rezé Cedex , France

4. ESO UMR 6590 Espaces et Societes , Angers , France

Abstract

Abstract The development of citizen-based approaches to the diagnosis and decision-making on urban noise environments responds to a demand from both local authorities and residents. However, the methods for fostering the involvement of citizens and the valorization of local knowledge have yet to be invented. This article reports on a co-constructed experiment between researchers and local authorities, in the city of Rezé (France), of an urban noise diagnosis based on the residents and the use of the smartphone application NoiseCapture, which allows a participative measurement of sound levels. The framework also includes focus group discussions. The dynamics of the recruitment and data collection phase are analysed, showing the importance of creating public events around the initiative. Maps of noise levels, but also of the presence of sound sources, such as road, rail and air traffic, or animals, are produced in a collaborative way. Finally, the focus group discussions highlight that (i) repeated noise measurement modifies participants’ relationship to sound environments; (ii) NoiseCapture enhances the formation of a group of residents active on noise issues. Such a framework can provide a citizen-based basis for decisions on noise environments; the next step will be to study its adaptability to different territories.

Publisher

Walter de Gruyter GmbH

Subject

Management, Monitoring, Policy and Law,Urban Studies,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3