Der Substituenteneinfluß auf die Fluoreszenz des 1.3-Diphenyl-2-pyrazolins / Substituent Effects on the Fluorescence of 1,3-Diphenyl-2-pyrazoline

Author:

Strähle H.1,Seitz W.1,Güsten H.1

Affiliation:

1. Kernforschungszentrum Karlsruhe, Institut für Radiochemie

Abstract

The electronic absorption spectra, absolute fluorescence spectra and fluorescence quantum yields as well as the fluorescence decay times of nine 1,3-diphenyl-2-pyrazolines substituted in the para-position of the 1-phenyl ring and of 19 substituted in the paraposition of the 3-phenyl ring were measured in degassed benzene at room temperature. The fluorescence quantum yields are about 0.90 with the exception of the NO2- and J-substituted 1,3-diphenyl-2-pyrazolines. The fluorescence decay time ranges from 2 to 4 nsec. The natural fluorescence lifetimes determined experimentally agree well with those calculated from the absorption spectra according to STRICKLER and BERG. A plot of the Hammett σp-values versus the energies of the absolute fluorescence maxima of the psubstituted 1- and 3-phenyl ring of the 2-pyrazoline system shows a statistically significant linear correlation with moderate precision. The linearity between ground state substituent constants and fluorescence energies reveals that the relative importance of the inductive and the resonance effects of the substituents remains constant during the transition from the ground state to the relaxed excited singlet state. In the excited singlet state of 1,3-diphenyl-2-pyrazoline the p-substituents provide more room for a larger charge displacement in the intramolecular charge-transfer. The structural bands in the fluorescence spectra resulting from strong electron accepting substituents in the para-position of the 1-phenyl ring are considered as the result of the ring breathing vibration due to a local excitation of the 1-phenyl ring.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3