Correlation between in vitro anti-urease activity and in silico molecular modeling approach of novel imidazopyridine–oxadiazole hybrids derivatives

Author:

Khan Shoaib1,Hussain Rafaqat2,Khan Yousaf3,Iqbal Tayyiaba1,Aziz Tariq4,Alharbi Metab5

Affiliation:

1. Department of Chemistry, Abbottabad University of Science and Technology , Abbottabad 22500 , Pakistan

2. Department of Chemistry, Hazara University , Mansehra 21120 , Pakistan

3. Department of Chemistry, COMSATS University Islamabad 45550 , Islamabad , Pakistan

4. Departement of Agriculture, University of Ioannina , Arta , Greece

5. Department of Pharmacology and Toxicology, King Saud University , Riyadh , Saudi Arabia

Abstract

Abstract In the current era, a potent drug is still needed on the market for the treatment of various diseases worldwide. Researchers mainly focus on those enzymes that cause these diseases. One of the major diseases is caused by an enzyme called urease, which increases the concentration of ammonia in the body upon hydrolysis. Researchers across the globe have keen interest to synthesize the potent inhibitor for this conversion. From this perspective, hybrid analogs of imidazopyridine and oxadiazole (1–20) were designed and efficiently synthesized followed by characterizing them through varied spectroscopic methods (1HNMR, 13CNMR, and HREI-MS). In addition, in vitro analyses of the synthesized compounds were conducted to evaluate their anti-urease potency. There was significant potential in most compounds analyzed, but analogs 15, 16, and 17 (IC50 = 2.20 ± 0.10 μM, IC50 = 2.50 ± 0.10 μM, and IC50 = 2.30 ± 2.10 μM, respectively) performed exceptionally well in comparison with thiourea (IC50 = 22.30 ± 0.44 μM). The selected candidates were further investigated under a molecular docking study to confirm protein ligand interactions. In addition, energy gap (E gap) of the HOMO–LUMO was explored via density functional theory studies.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3